Движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения  удобно рассматривать угловое перемещение Δφ (или угол поворота), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением  

При малых углах поворота Δl ≈ Δs.

Рисунок 1.6.1.

Линейное  и угловое Δφ перемещения при движении тела по окружности

Угловой скоростью ω тела в данной точке круговой траектории называют предел (при Δt→0) отношения малого углового перемещения Δφ к малому промежутку времени Δt:

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением. Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

Для доказательства этого выражения рассмотрим изменение вектора скорости   за малый промежуток времени Δt. По определению ускорения

Рисунок 1.6.2.

Центростремительное ускорение тела  при равномерном движении по окружности

Векторы скоростей  и  в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υA =υB = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

При малых значениях угла Δφ = ωΔt расстояние |AB| =Δs ≈ υΔt. Так как |OA| = R и |CD| = Δυ, из подобия треугольников на рис. 1.6.2 получаем:

При малых углах Δφ направление вектора  приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δt→0,  получаем:

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

где  – радиус-вектор точки на окружности, начало которого находится в ее центре.

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная) составляющая ускорения (см 1.1):

В этой формуле Δυτ = υ2 – υ1 – изменение модуля скорости за промежуток времени Δt.

Направление вектора полного ускорения  определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

Рисунок 1.6.3.

Составляющие ускорения  и   при неравномерном движении тела по окружности

Движение тела по окружности можно описывать с помощью двух координат x и y (плоское движение). Скорость тела в каждый момент можно разложить на две составляющие υx и υy (рис. 1.6.4).

При равномерном вращении тела величины x, y, υx, υy будут периодически изменяться во времени по гармоническому закону с периодом

Рисунок 1.6.4.

Разложение вектора скорости   по координатным осям

 

Статьи раздела

Добавить комментарий

Комментировать (войти или зарегистрироваться)

Авторство представленной теоретической части не установлено, но мы ссылаемся на открытые источники, где этот материал можно также посмотреть и прочитать: www.edu.ruwww.en.edu.ru и www.physics.ru. Тексты в этих источниках - идентичны. Команда проекта не претендует на авторство, но сочла необходимым исправить ошибки и отредактировать текст и некоторые формулы. Текстовая часть курса не является зафиксированной, работа с лучшими учителями предмета идет и со временем получится синтетический курс в открытом доступе.